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SOLUTION OF FIELD EQUATIONS

Construction & application of the
electromagnetic propagators

Introduction. Working in the Lorentz gauge, our problem—acquired at (373)—is
to describe the solution of

Aν = 1
cj

ν (434)

which results when
i) the source term jν(x) and
ii) initial & boundary conditions

are prescribed. We will have then only to construct Fµν = ∂µAν − ∂νAµ to
obtain descriptions of the physical fields EEE(x) and BBB(x) that arise under the
conditions specified. Our problem is made tractable by two circumstances:

• Equations (434) are uncoupled (though the jµ are constrained by charge
conservation to satisfy ∂µj

µ = 0 and the Aµ to satisfy the Lorentz gauge
condition ∂µA

µ = 0). This means that it is suffient to study the generic
equation

φ(x) = ρ(x) (435)

• Equations (434) are linear . This means that we can employ Green’s
technique; i.e., that (recall the discussion on pages 16–17) we can
undertake to solve (435) by weighted superposition of the solutions of

φ(x) = δ(x) (436.1)
φ(x) = 0 (436.2)
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We anticipate on these grounds that the solution of (435) can be developed

φ(x) = φ0(x) +
∫
G(x− y)ρ(y) d4y (437)

=
{

solution of the homogeneous equation (436.2)
into which we have folded the initial value data

}
+

{
particular solution of (435)

}
and that the physical solutions of (434) admit of similar description:

Aµ(x) = Aµ
0 (x) + 1

c

∫
DR(x− y)jµ(y) d4y︸ ︷︷ ︸ (438.1)

|

Here Aµ
0 (x) denotes the field which has evolved from any initially present

ambient field, and
|
≡ Aµ

R(x) (438.2)

denotes the field generated by past source activity (the subscript R stands for
“retarded”).

We look first to the detailed substance of the preceding rough remarks,
and in subsequent sections to a graded sequence of illustrative applications.

1. Green’s function techniques in classical electrodynamics: construction of the
propagators. I start with remarks that—though they may seem at first to be in
mathematical left field—will place us in position to say powerful things about
the source-independent term Aµ

0 (x).
If in Gauss’ theorem ∫∫∫

R
∇∇∇···AAAd3x =

∫∫
∂R
AAA···dσdσdσ

we set AAA = ϕ∇∇∇ψ we obtain∫∫∫
R

{
ϕ∇2ψ +∇∇∇ϕ ···∇∇∇ψ

}
d3x =

∫∫
∂R
ϕ∇∇∇ψ ···dσdσdσ

from which (interchange ϕ and ψ, subtract) follows Green’s theorem∫∫∫
R

{
ϕ∇2ψ − ψ∇2ϕ

}
d3x =

∫∫
∂R

{
ϕ∇∇∇ψ − ψ∇∇∇ϕ

}
···dσdσdσ

Green’s theorem lies at the heart of many notable existence and uniqueness
theorems. And it is quite robust: it extends to spaces of any dimension, and of
non-Euclidean metric structure. In 4-dimensional spacetime it reads∫∫∫∫

R

{
ϕ ψ − ψ ϕ

}
d4x =

∫∫∫
∂R

{
ϕ∂αψ − ψ∂αϕ

}
dσα (439)

To prepare for the application specifically at hand we
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dσ′′
α

x

dσ′
α

Figure 105: Spacetime sandwich, bounded by surfaces the normals
to which are everywhere timelike and future directed (the former
by construction, the latter by convention). The upper and lower
spacelike surfaces (or timeslices) σ′ and σ′′ jointly comprise the
boundary ∂R of the region R which we bring in the text to a
distinctive application of Green’s theorem.

1 ) assume both ϕ and ψ to satisfy (436.2): ϕ = ψ = 0
2 ) assume R to be the disk-like region bounded by the everywhere-spacelike

surfaces σ′ and σ′′, where σ′′ contains x—the field point of interest.
It is out intention to spread Cauchy data (i.e.; initial data sufficient to
identify/determine a solution) on σ′. . . like so much peanut butter & jelly.

3 ) assume the surface differentials dσ′
α and dσ′′

α to be (not “outer-directed”
but) future-directed (see the figure).

Green’s equation (439), on the strength of those assumptions, becomes

0 =
∫

σ′′

{
ϕ∂αψ − ψ∂αϕ

}
dσ′′

α −
∫

σ′

{
ϕ∂αψ − ψ∂αϕ

}
dσ′

α

or∫
σ′′

{
ϕ(x′′)∂αψ(x′′) − ψ(x′′)∂αϕ(x′′)

}
dσ′′

α︸ ︷︷ ︸
=

∫
σ′

{
ϕ(x′)∂αψ(x′) − ψ(x′)∂αϕ(x′)

}
dσ′

α

Now = ϕ(x) (440)

if an appropriately specialized meaning is assigned to ψ . If we agree to write
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ψ(x′′) ≡ D0(x′′−x) and to interpret x as a “continuously adjustable parameter”
then we achieve (440) by stipulating that

D0(x′′− x) = 0∫
σ′′
f(x′′)∂αD0(x′′− x) dσ′′

α = f(x) :
{

all f , and
all timeslices σ′′ through x

D0(x′′− x) = 0 : x′′− x spacelike
D0(0) = 0




(441)

It is by no means obvious that such aD0(•) exists, but if it did (and it does!. . . as
will soon be established by construction) we would have

φ0(x) =
∫

σ′

{
φ0(x′)︸ ︷︷ ︸ ∂αD0(x′− x) −D0(x′− x) ∂αφ0(x′)︸ ︷︷ ︸

}
dσ′

α (442)

| |
—Cauchy data —more Cauchy data

which describes φ(x) in terms of the prescribed initial data; i.e., in terms of
the stipulated values assumed by φ and ∂φ on the spacelike surface σ′. The
construction of D0(•) follows (as it happens) directly from that of DR(•), so it
is to the latter—simpler—problem that I now turn:

Let φ̃(k) and ρ̃(k) be the Fourier transforms of φ(x) and ρ(x):

φ(x) =
(

1√
2π

)4
∫∫∫∫

φ̃(k)ei(k
0x0− kkk···xxx) dk0dk1dk2dk3

≡ 1
(2π)2

∫
φ̃(k)eikx d4k (443.1)

φ̃(k) = 1
(2π)2

∫
φ(x)e−ikx d4x (443.2)

ρ(x) = 1
(2π)2

∫
ρ̃(k)eikx d4k (443.3)

ρ̃(k) = 1
(2π)2

∫
ρ(x)e−ikx d4x (443.4)

The Fourier transform of φ(x) = ρ(x) is algegbraic

−k2φ̃(k) = ρ̃(k)

and admits of immediate solution:263

⇓
φ̃(k) = − 1

k2
1

(2π)2

∫
ρ(x)e−ikx d4x

263 This development is typical of the effective application of integral transform
techniques to the solution of differential equations. And it illustrates why the
inhomogeneous equation φ(x) = ρ(x) is so much easier to discuss than its
homogeneous counterpart.
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Returning with this information to (443.1), we reverse the order of integration
to obtain

φ(x) =
∫ {

− 1
(2π)4

∫
k−2eik(x− x) d4k

}
ρ(x) d4x (444)

Comparison with (437) gives

G(x− x) = − 1
(2π)4

∫
k−2eik(x− x) d4k

k2 = k2
0 − kkk···kkk

But the integrand is singular on the null-cone in k -space, so the integral is
meaningless until assigned a meaning . To that end, we write

= − 1
(2π)3

∫∫∫
e−ikkk···(xxx− xxx)

{
1
2π

∫ +∞

−∞

1
k2
0 − kkk···kkk e

ik0(x0− x0) dk0

}
d3k (445)

which serves to localize the pathology at a pair of points: k0 = ±
√
kkk···kkk . Next

we resort to some standard trickery: we complexify k0, reinterpret
∫ +∞
−∞ as a

contour integral
∮

, and circumvent the simple poles at k0 = ±
√
kkk···kkk by contour

deformation. Equation (445) is replaced thus by the meaningful but contour-
dependent equation

GC(x− x) = − i
(2π)3

∫∫∫
e−ikkk···(xxx− xxx) (446)

·
{

1
2πi

∮
C

1
k2
0 − kkk···kkk e

ik0(x0− x0) dk0

}
d3k

where (by the “method of partial fractions”)

1
k2
0 − kkk···kkk = 1

2k

[ 1
k0 − k

− 1
k0 + k

]
with k ≡

√
kkk···kkk.

We have physical interest not in all possible GC -functions (all possible
contours C, of which there are only a handful of truly distinct options: see
relativistic classical fields () page 167) but only in that particular
GC—denoted DR(x−x)—which conforms to our conception of “retarded causal
action.” It is, therefore, for physical reasons (see below) that we take C to have
the form illustrated in Figure 106. Writing k0 = r + is, we have

eik0(x
0− x0) = e−s(x

0− x0) · eir(x
0− x0)

and it becomes clear that to achieve a finite result we must have s → ±∞
according as x0 ≷ x0; i.e., that we must close the contour on the upper or lower
half-plane according as the source point x lies in the past or the future of the field
point x. The detours around the poles (see the figure) are now dictated by the
physical requirement that present field physics shall be insensitive to future
source activity. It now follows by the residue theorem that
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contour if x0 > x0

R→ ∞

contour if x0 < x0

Figure 106: Causal contour, inscribed on the complex k0-plane:
close on the upper half-plane if the field point x lies in the future
of the source-point x (x0 > x0), and on the lower half-plane in the
contrary case. The upper contour encloses the poles at k0 = ±

√
kkk···kkk ;

the lower contour excludes them, so gives
∮
c = 0.

{
etc.

}
=




1
2k

[
eik(x

0− x0) − e−ik(x
0− x0)

]
= i

sin k(x0− x0)
k

if x0 > x0

0 if x0 < x0

so

DR(x− x) =




1
(2π)3

∫∫∫
sin k(x0− x0)

k
e−ikkk···(xxx− xxx) d3k

0

(447)

To facilitate evaluation of the
∫∫∫

we introduce spherical coordinates into
kkk -space (3-axis parallel to xxx− xxx) and (in the case x0 > x0) obtain

= 1
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

sin kξ0

k
e−ik ξ cosφk2 sinφdθdφdk

where ξ0 ≡ x0− x0 and ξ ≡
√

(xxx− xxx)···(xxx− xxx) � 0. Immediately
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= 1
(2π)2

∫ ∞

0

2 sin ξ0k · sin ξk
ξ︸ ︷︷ ︸ dk

= 1
ξ

[
cos k(ξ0− ξ) − cos k(ξ0+ ξ)

]
= 1

(2π)2
1
ξ

lim
k→∞

[ sin k(ξ0− ξ)
(ξ0− ξ) − sin k(ξ0+ ξ)

(ξ0+ ξ)

]
But δ(x) = 1

π lim
k→∞

sin kx
x provides a standard parameterized representation of

the Dirac δ-function,264 so

= 1
(2π)2

π
ξ

[
δ(ξ0− ξ) − δ(ξ0+ ξ)

]
(448)

The 2nd δ-function is moot when ξ0 > 0 (i.e., when x0 and x0 stand in causal
sequence: x0> x0), while according to (447) both terms are extinguished when
x0 < x0. We come thus to the conclusion that

DR(x− x) =




1
4πξ

δ(ξ0− ξ) : ξ0 > 0

0 : ξ0 < 0

(449.1)

Were we to deform the contour C so as instead to favor advanced action (fields
responsive to future source activity!) we would, by the same analysis, be led to

DA(x− x) =




0 : ξ0 > 0

1
4πξ

δ(ξ0+ ξ) : ξ0 < 0
(449.2)

The retarded and advanced propagators (or Green’s functions)DR(•) andDA(•)
are, in an obvious sense, “natural companions.” The former, according to (448),
vanishes except on the lightcone that extends backwards from the fieldpoint x,
while DA(•) vanishes except on the forward lightcone: see Figure 107.

What about the function D0(x − x)? It has, as I will show, been sitting
quitely on the right side of (448):

D0(x− x) = 1
4πξ

[
δ(ξ0− ξ) − δ(ξ0+ ξ)

]
: all ξ0 (450)

= DR(x− x) −DA(x− x)

Note first that D0(x − x)—thus described, and thought of as a function of
x—clearly vanishes except on the lightcone that extends backward and forward

264 To see how the representation does its job, use Mathematica to Plot the
function sin kx

πx for several values of k, and also to evaluate
∫ +∞
−∞

sin kx
πx dx.
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x

ξ0

ξ x

Figure 107: The retarded propagator DR(•) harvests source data
written onto the lightcone (shown at left) that extends backward from
the fieldpoint •. The advanced propagator DA(•) looks similarly to
the forward lightcone. Source data at the • shown at left is actually
invisible to the fieldpoint •, since it lies interior to rather than on
the backward cone (but it would become visible if the photon had
mass). Ditto at right.

from x, so the 3rd of the conditions (441) is clearly satisfied. Writing

D0(x− x) ≡ D(ξ0, ξ)

we observe that D(ξ0, ξ) is, by (450), an odd function of ξ0, so

D(0, ξ) = 0 : all ξ

which serves to establish the 4th of the conditions (441). That D0(x− x) = 0
(the 1st of those conditions) follows from the remarks (i) that the functions
GC(x − x) described at (446) satisfy GC = 0 for every contour C, and (ii)
that GC → D0 if we take C to be (topologically equivalent to) the bounded
contour shown in Figure 108. Finally, we observe (see again (447))that

∂
∂x0

D0(x− x) = 1
(2π)3

∫∫∫
cos k(x0 − x0)e−ikkk···(xxx− xxx) d3k

↓
= 1

(2π)3

∫∫∫
e−ikkk···(xxx− xxx) d3k when x0 = x0

But = δ(xxx− xxx)
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Figure 108: The bounded contour that, when introduced into (446),
yields the function D0. The contours shown in Figure 106 have the
property that they are “this or that, depending on the sign of the
time,” and it is because they “flip” that they give rise to a solution
of the inhomogeneous wave equation. The contour shown above
entails no such flip, so gives rise to a solution of the homogeneous
wave equation. The point is developed in the text, and—in much
great detail—in a reference cited.

by the Fourier integral theorem,265 and this expresses the upshot of the 2nd of
the conditions (441). Further analysis would show that the D0(x−x) described
above is the unique realization of the conditions (441).

Returning with (450) to (447) we obtain

DR(x− x) = θ( x0 − x0) ·D0(x− x)
DA(x− x) = −θ(−x0 + x0) ·D0(x− x)

where θ(x) is the Heaviside step function:

θ(x) =
∫ x

−∞
δ(ξ) dξ =




0 x < 0
1
2 x = 0
1 x > 0

It’s occurance in this context can be traced to the sign-of-the-times-dependent
“contour flipping” that enters into the definitions of DR(x− x) and DA(x− x)
265 The Fourier integral theorem asserts that

φ(x)= 1√
2π

∫
eik x

{
1√
2π

∫
e−ik xφ(x) dx

}
dk

for “all” φ(x). Reversing the order of integration, we obtain the identity used
in the text

δ(x− x) = 1
2π

∫
e−ik(x−x) dk

which can be considered to lie at the heart of Fourier’s theorem and of Fourier
analysis.
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(see again Figure 106) but is absent from the definition of D0(x− x).266

From the fact that D0(•) is attached to both sectors of the lightcone we
conclude (see again (442)) that if we know the values assumed by the free
ambient field φ0 and its derivatives ∂φ0 on some spacelike surface σ′ then we
know the values assumed everywhere by φ0: the free field equations allow us
both to predict and to retrodict . But the field equations do not, in general,
allow us to predict source motion, which is typically of semi-extrinsic origin
(we haven’t yet decided whether to flip the light switch or not!) . . . and it
is for this reason that we have—“by hand,” not from mathematical (or deep
physical?) necessity—inserted DR(•) rather than DA(•) into (438.1).

The preceding analysis has been somewhat “heavy.” But it has yielded
results—see again (438), (442), (449) & (450)—of remarkable simplicity and
high plausibility. It has employed analytical methods which have in fact long
been standard to several branches of “linearity-dominated” physics and
engineering (though their importation into classical/quantum electrodynamics
is—oddly—of relatively recent date: it was accomplished in the late ’s
and early ’s by Julian Schwinger) . . . and which are, beneath the surface
clutter, really rather pretty (Richard Crandall’s “favorite stuff”). I turn now to
discussion of some of the specific electrodynamical implications of the material
now in hand.

2. Application: the Liénard-Wiechert potential. Let the values—values consistent
with the Lorentz gauge condition—assumed by the 4-potential Aµ and its first
derivatives ∂αAµ on some everywhere-spacelike surface σ be given/prescribed.
Then (see again (442): also Figure 109)

Aµ(x) =
∫

σ

{
Aµ(x)∂αD0(x− x) −D0(x− x)∂αAµ(x)

}
dσα (451)

describes the “evolved values” that—in forced consequence of the equations of
free-field motion—are assumed by our “ambient field” at points x which lie off
the “data surface” σ. Any particular inertial observer would in most cases find
it most natural to take σ to be a time-slice, and in place of (451) to write

=
∫∫∫ {

Aµ(x) ∂
∂x0

D0(x− x) −D0(x− x) ∂
∂x0

Aµ(x)
}
dx1dx2dx3

While every particular observer has that option (Figure 110), it must be borne in
mind that the time-slice concept is not boost invariant : the point was illustrated
in Figure 58, and is familiar as the “breakdown of non-local simultaneity.” The
preceding equation states explicitly how the value of Aµ(x) depends upon the
initial value and initial time derivative of the field, and establishes the sense in
which “launching a free electromagnetic field” is like throwing a ball.267

266 This topic is developed in unusual detail in §§3 & 4 of my “Simplified
production of Dirac δ-function identities,” ().
267 problem 70.
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Figure 109: Cauchy data is written onto the dotted surface σ. The
function D0(x − x) vanishes except on the lightcone: it serves in
(451) to describe how data at the intersection of σ with the lightcone
is conflated to produce the value assumed by Aµ at the fieldpoint •.
As the temporal coordinate of • increases the intersection becomes
progressively more remote, until finally it enters a region where
(in typical cases) the initial data was null . . .which is to say: the
ambient field at any given spatial location can be expected ultimately
to die away. The die-off is reenforced by the (4πξ)−1 which was seen
at (450) to enter into the design of D0.

Figure 110: An inertial observer has exercised his non-covariant
option to deposit his Cauchy data on a time-slice. Only data at the
spherical intersect of the lightcone and the time-slice contribute to
the value assumed at • by Aµ, though “if the photon had mass” then
data interior to the sphere would also contribute.2
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We turn our attention now to the component of the Aµ-field that arises
from source activity, which according to (438/449) can be described

Aµ(x) = 1
c

∫
DR(x− x)jµ(x) d4x

DR(x− x) =




1
4πR

δ(cT−R) : T > 0

0 : T < 0

(452.1)

(452.2)

with cT ≡ x0 − x0 and R ≡ |xxx − xxx |. We can therefore state that the value
assumed by Aµ at the field point x arises (by superposition) entirely from the
source activity sampled by the lightcone which extends backward from x. In
an effort to expose more clearly the meaning of this result we consider jµ(x) to
arise from a solitary point charge e in arbitrarily prescribed motion: we assume,
in other words, that jµ(x) can be described (see again (323))

jµ(x) = ec

∫ +∞

−∞
uµ(τ)δ(x− x(τ)) dτ

Immediately

Aµ
R(x) = e

∫
DR(x− x)

∫ +∞

−∞
uµ(τ)δ(x− x(τ)) dτd4x

= e

∫ +∞

−∞

∫
uµ(τ)DR(x− x)δ(x− x(τ)) d4xdτ

= e

∫ +∞

−∞
uµ(τ)DR(x− x(τ)) dτ

= e
4π

∫ +∞

−∞
uµ(t) 1

R(τ)
δ(G(τ)) dτ

G(τ) ≡ cT (τ) −R(τ)

An elementary change-of-variables argument268 leads to the important general
conclusion that

δ(g(x)) =
∑
α

1
|g ′(xα)|δ(x− xα) (453)

where g ′(xα) ≡ d
dxg(x) and where (see Figure 111) the xα locate the zeros of

g(x). It follows by way of application to the problem at hand that

= e
4π

∫ +∞

−∞
uµ(t) 1

R(τ)
1

|G′(τ0)|
δ(τ − τ0) dτ (454)

where τ0 is the proper time at which x(τ) punctures the backward lightcone,
and where G′ ≡ d

dτG. If t0, xxx0 and vvv0 refer to the source-particle at the instant
of puncture, then we have (borrowing a trick from page 192)

268 See electrodynamics (), page 304. An alternative argument—that
makes transparent the origin of the perplexing absolute value bars—can be
found in the little paper cited just above.264
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x1 x2 x3 x4 x5

Figure 111: Zeros xα of a function g(x). The numbers xα and
g(xα) enter into the formulation of the important identity (453).

G′(τ0) = γ0
d
dt0

{
c(t− t0) −

√
RRR···RRR

}
with RRR ≡ xxx− xxx0

= γ0
(
− c+R̂RR···vvv0

)
= −cγ0(1 − β‖)0 (455)

β‖ ≡ 1
c R̂RR···vvv ≡

{
magnitude of the component
of βββ that is parallel to RRR

Returning with (455) to (454) we obtain269

Aµ
R(x) = e

4π

[ 1
cγ(1 − β‖)R

uµ
]
0

(456.1)

↑
—signifies “evaluation at the puncture point”

which—recall A =
(
ϕ
AAA

)
and u = γ

(
c
vvv

)
—can also be formulated

ϕ
R
(x) = e

4π

[ 1
(1 − β‖)R

]
0

AAA
R
(x) = e

4π

[ 1
(1 − β‖)R

βββ
]
0


 (456.2)

Equations (456)—which are, in view of the complexity of the argument
from which they derive, remarkably simple, and which describe the potential

269 Beware! The R on the left is intended to signify “retarded,” while on the
right R means “length of RRR.”
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fields generated by the retarded action of a moving point charge—were first
obtained by A. Liénard () and E. Wiechart (), and describe what are
universally known as the Liénard-Wiechart potentials. The “retarded potential”
idea was apparently original to B. Riemann (), and the essence of (452)
can reportedly be found in work () of Ludwig Lorenz (who, as previously
remarked, is to be distinguished from H. A. Lorentz). The work of Riemann
and of Lorenz was known to Maxwell, but one gets the impression (see Treatise
on Electricity & Magnetism, §§805 and 861–end) that Maxwell was not much
impressed. Which—though historically explicable—is too bad, for equations
(456) are, as will emerge, fundamental to the theory of radiative processes.

The “advanced analogs” of (456) can be obtained by reversing the signs of
all β‖-terms and evaluating

[
etc.

]
at the future puncture point.

The Liénard-Wiechart potential (456.2) gives back the familiar Coulomb
potential

ϕ(x) = e
4πR

AAA(x) = 000

when the source is at rest (see the figure), and the “retarded evaluation” idea

x

R

R

Figure 112: Show in red is the worldline of a charged particle at
rest (with respect to the inertial observer who drew the diagram).
The distance from the field point x to the puncture point on the
backward lightcone was seen to be R . . . and so—as yet unbeknownst
to the field point—it has remained.

conforms nicely to our physical intuition. It is, therefore, the γ(1− β‖)-term in
(456.1) and the (1 − β‖)-term in (456.2) that demand “explanation” if we are
to say that we “understand” (456). Now . . . if θ is the angle subtended by βββ
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-1 1 2 3 4

Figure 112: Polar plots showing the θ-dependence of the Doppler
factor

√
1 − β2/(1 − β cos θ), with β = 0, 0.2, 0.4, 0.6, 0.8, 0.95.

and RRR we have

1
γ(1 − β‖)

= 1
γ(1 − β cos θ)

=




√
1 + β
1 − β > 1 at θ = 0

= 1 at θ = arccos
[
1 −

√
1 − β2

β

]
1
γ
< 1 at θ = 90◦√

1 − β
1 + β

< 1 at θ = 180◦

—results of which the preceding figure provides vivid graphic interpretations.
The expressions [(1 + β)/(1 − β)]±1 are familiar (recall again problem 43) as
the eigenvalues of /\\\(β): they are found, morover, to be fundamental to the
description of the relativistic Doppler effect ,270 so

1
γ(1 − β‖)

≡ Doppler factor

becomes271 a natural terminology. Looking back again to (456.1), we see that
the Doppler factor

• serves to enhance the value of Aµ
R if the source point is seen by the field

point to be approaching at the moment of puncture:

0 � θ0 � cos–1
[

1−
√

1−β2

β

]
0

• serves in the contrary case to diminish the value of Aµ
R

. . .which is what one would expect if (see Figure 114) the lightcone possessed
some small but finite “thickness,” for in the former case the field point would
then get a relatively “longer look” at the source point, and in the latter case a
“briefer look.” Note that it is not the Doppler factor itself but the

truncated Doppler factor ≡ 1
(1 − β‖)

that stands in (456.2).

270 See electrodynamics () page 239.
271 Compare A. Sommerfeld, Electrodynamics (), page 250.
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Figure 114: If the lightcone had “thickness” then the presence
of the Doppler factor in (456) could be understood qualitatively to
result from the relatively “longer look” that the field point gets at
approaching charges, the relatively “briefer look” at receding charges.

“effective present position” present position

Reff (v‖T )0

cT0

puncture point

R0

Figure 115: Construction used to define the “effective present
distance” from source to field point:

Reff = (R− v‖T )0 = (R− β‖cT )0 = (1 − β‖)0R0
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Some textbook writers make much of the curious fact that it is possible
(see Figure 115) by linear extrapolation from the puncture point data to arrive
at an “physical interpretation” of the expression [(1 − β‖)R]0

[(1 − β‖)R]0 = Reff ≡
{ present distance from field point to charge if

the charge had moved uniformly/rectilinearly
since the moment of puncture

and in this notation to cast (456.2) in the form

ϕ
R
(x) = e

4πReff

AAAR(x) = e
4πReff

βββ0

My own view is that the whole business, though memorably picturesque, should
be dismissed as a mere curiosity . . . on grounds that it is too alien to the spirit of
relativity—and to the letter of the principle of manifest Lorentz covariance—to
be of “deep” significance. More worthy of attention, as will soon be
demonstrated, is the fact that equations (456) admit272 of the following
manifestly covariant formulation

Aµ
R(x) = e

4π

[
uµ

Rαu
α

]
0

(457)

where Rµ ≡ xµ − xµ(τ)

3. Field of a point source in arbitrary motion. What we want now to do is to
evaluate

Fµν
R (x) = ∂µAν

R(x) − ∂νAµ
R(x)

where Aµ
R(x) is given most conveniently by (457)

So the physics of what follows is conceptually straightforward. The point is
worth keeping in mind, for the computational details are—like the final result—
quite intricate.

Turning now, therefore, to the evaluation of

∂µAν
R(x) = gµm ∂

∂xm

{
e
4π

[
uν

Rαuα

]
0

}
. . . it is critically important to notice that (see the following figure) variation of
the field point x induces a variation of the proper time of puncture; i.e., that
τ0 is x-dependent: τ0 = τ0(x). Formally,

∂
∂xm

= ∂∂∂
∂∂∂xm

+ ∂ τ
∂xm

∂
∂ τ

where ∂∂∂m senses explicit x-dependence and(∂mτ) ∂
∂τ senses covert x-dependence.

272 problem 71.
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x+ dx
x

τ0(x+ dx)

τ0(x)

Figure 116: Variation of the field point x typically entails variation
also of the puncture point, and it is this circumstance that makes
evaluation of the electromagnetic field components so intricate.

Proceeding thus from

∂µAν
R(x) = e

4π
gµm

[{
∂∂∂
∂∂∂xm

+ ∂ τ
∂xm

∂
∂ τ

} uν(τ)
Rα(x, τ)uα(τ)

]
0

}
Rα(x, τ) ≡ xα − xα(τ)

we are led by straightforward calculation to the following result:

= e
4π

[
1

(Rαuα)2
(
c2gµm ∂ τ

∂xm
− uµ

)
uν

]
0

+ e
4π

[
1

(Rαuα)
gµm ∂ τ

∂xm

{
aν − (Rαa

α)
(Rβuβ)

uν
}]

0
(458)

Here use has been made of uαuα = c2 and also of

aµ ≡ duµ(τ)
dτ

= 4-acceleration of the source particle
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Notational adjustments make this result easier to write, if not immediately
easier to comprehend. Let r be the Lorentz-invariant length defined270

r ≡ 1
cRαu

α = γ(1 − β‖)R

and let wµ be the dimensionless 4-vector defined

wµ ≡ c∂µτ − 1
cu

µ

Then

∂µτ = cwµ + uµ

c2

Easily ∂µ(RαR
α) = 2

{
Rµ − (∂µτ)(Rαu

α)
}
. From this and the fact that Rµ is

(by definition of “puncture point”) invariably null at the puncture point

[
RαR

α
]
0

= 0, therefore
[
∂µ(RαR

α)
]
0

= 0

it follows that [
∂µτ

]
0

=
[
Rµ/(Rαu

α)
]
0

= 1
c
[
Rµ/r

]
0

from which [
uαw

α
]
0

= 0[
wαw

α
]
0

= −1

[
aα∂

ατ
]
0

=
[
Rαa

α

Rβuβ

]
0

= 1
c
[
aαw

α
]
0

follow as fairly immediate corollaries.273 When we return with this information
to (458) we obtain

∂µAν
R(x) = e

4π

[
1
r2
wµbν

]
0

+ e
4πc2

[
1
r
(wµ + bµ)

(
aν − (aw)bν

)]
0

b ≡ 1
cu = γ

(
1
βββ

)

273 For detailed proof see classical radiation (), pages 523/4. But
beware! I have now altered slightly the definitions of r and wµ.
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Consequently

Fµν
R (x) ≡ electromagnetic field at x due to past source activity

= e
4π

[
1
r2

(wµbν− wνbµ)
]
0

(459)

+ e
4πc2

[
1
r

{
(bµaν− bνaµ) + (wµaν− wνaµ) − (aw)(wµbν− wνbµ)

}]
0

= acceleration-independent term ∼ 1/r2,
dominant near the worldline of the source

+ acceleration-dependent term ∼ 1/r,
dominant far from the worldline of the source

= “velocity field” + “acceleration field”

= “near field” + “far field”

= generalized Coulomb field + radiation field

This result is complicated (the physics is complicated!), but not “impossibly”
complicated. By working in a variety of notations, from a variety of viewpoints,
and in contact with a variety of special applications it is possible to obtain—
ultimately—a fairly sharp feeling for the extraordinarily rich physical content
of (459). As preparatory first steps toward that objective . . .

We note that, using results developed on the preceding page,

wµ = c∂µτ − bµ

becomes

=
[
Rµ/r − bµ

]
0

which when spelled out in detail reads(
w0

www

)
=

1

γ(1 −R̂RR···βββ)R

(
R
RRR

)
− γ

(
1
βββ

)

with R̂RR ≡ RRR/R. A little manipulation (use γ−2 = 1− βββ ···βββ ) brings this result to
the form

=
γ

1 −R̂RR···βββ

(
(R̂RR− βββ )···βββ

R̂RR− βββ + (R̂RR···βββ )βββ − (βββ ···βββ)R̂RR︸ ︷︷ ︸
)

(460.1)

|
= βββ× (βββ×R̂RR)

It follows similarly from (270) that

a =
(
u̇0

u̇uu

)
= γ4

(
aaa···βββ

aaa+ βββ× (βββ× aaa)

)
(460.2)

where aaa ≡ dvvv/dt.
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To extract EEE(x) from (460) we have only (see again page 108) to set ν = 0
and to let µ range on

{
1, 2, 3

}
:

EEE(x) = e
4π

[
1
r2

(wwwb0 − w0bbb)
]
0

+ e
4πc2

[
1
r

{
(bbbu̇0 − b0u̇uu) + (wwwu̇0 − w0u̇uu) − (aw)(wwwb0 − w0bbb)

}]
0

It follows readily from (460) that

wwwb0 − w0bbb = 1
1 −R̂RR···βββ

(R̂RR− βββ )

bbb u̇0 − b0 u̇uu = −γ3aaa

wwwu̇0 − w0u̇uu = −γ3 1
1 −R̂RR···βββ

βββ ×
(
aaa× (R̂RR− βββ)

)
(aw) = −γ3 1

1 −R̂RR···βββ

{
(1 − β2) (R̂RR···aaa ) − (1 −R̂RR···βββ )(βββ ···aaa )

}
so after some unilluminating manipulation we obtain

EEE(x) = e
4π

[
1
r2

1
(1 −R̂RR···βββ )

(R̂RR− βββ )
]
0

(461.1)

+ e
4πc2

[
1
r

γ

(1 −R̂RR···βββ )2
R̂RR×

(
(R̂RR− βββ ) × aaa

)]
0

A similar274 computation addressed to the evaluation of BBB(x) leads to a a result
which can be expressed very simply/economically:

BBB(x) =
[
R̂RR×EEE(x)

]
0

(461.2)

It should be noted that equations (459) and (461) describe precisely the same
physics: they differ only notationally. And both are exact (no approximations).
I remarked earlier, in connection with equations (456), that “the ‘retarded
evaluation’ idea

[ ]
0

conforms nicely to our physical intuition,” but must now
admit that (461) contains many non-intuitive details: in this sense it is evidently
easier to think reliably about potentials (which are “spooks”) than about fields
(which are “real”)!

Notice also that if we insert the expressions that appear on the right sides
of equations (461) into Lorentz’ FFF = q(EEE + 1

cvvv×BBB) then we obtain, in effect,
a description of the retarded position/velocity/acceleration-dependent action
on one charge upon another—a description free from any direct allusion to the
field concept! It was with the complexity of this and similar results in mind
that I suggested (page 250) that life without fields “would . . . entail more cost
than benefit.”

274 . . . and similarly tedious: generally speaking, one can expect tediousness to
increase in proportion to how radically one departs—as here—from adherence
to the principle of manifest covariance.
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We have encountered evidence (pages 240, 297) of what might be called a
“tendency toward BBB ⊥ EEE ,” but have been at pains to stress (page 332) that
BBB ⊥ EEE remains, nevertheless, an exceptional state of affairs. It is, in view of the
latter fact, a little surprising to discover that BBB ⊥ EEE does pertain—everywhere
and exactly—to the field produced by a single point source in arbitrary motion.
The key word here is “single,” as I shall now demonstrate: write

• EEE and BBB =R̂RR×EEE to describe (at x) the field generated by e;

• EEE and BBB =R̂RR×BBB to describe the field generated by e.
Clearly BBB ⊥EEE and BBB ⊥EEE. The question before us: “Is (BBB +BBB) ⊥ (EEE +EEE)?”
. . . can be formulated “Does (R̂RR×EEE + R̂RR×EEE)···(EEE + EEE) = 0?” and after a
few elementary simplifications becomes “Does (EEE ×EEE )···(R̂RR−R̂RR) = 0?” Pretty
clearly, (461.1) carries no such implication unless restrictive conditions are
imposed upon βββ, aaa, βββ and aaa .275, 276

My plan now is to describe a (remarkably simple) physical interpretation
of the acceleration-independent leading term in (461). This effort will motivate
the introduction of certain diagramatic devices that serve to clarify the meaning
also of the 2nd term. With our physical intuition thus sharpened, we will move
in the next chapter to a discussion of the “radiative process.”

4. Generalized Coulomb fields. The leading term in (459/461) provides an exact
description of EEE(x) and BBB(x) if the source—as seen from x—is unaccelerated
at the moment of puncture (i.e., if aaa0 = 000), and it becomes universally exact
(i.e., exact for all fieldpoints x) for free sources (i.e., for sources with rectilinear
worldlines). Evidently

EEE = e
4π

[
1
r2

1
(1 −R̂RR···βββ )

(R̂RR− βββ )
]
0

(462.1)

r ≡ γ(1 −R̂RR···βββ )R : see page 359

BBB =
[
R̂RR×EEE(x)

]
0

(462.2)

—which become “Coulombic” for sources seen to be at rest (βββ = 000)—describe
the Lorentz transform of the electrostatic field generated by an unaccelerated277

point charge. They describe, in other words, our perception of the Coulomb
field of a passing charge. Explicit proof—and interpretive commentary—is
provided below.

We are, let us suppose, certifiably inertial. So also is O, whom we see to
be drifting by with speed βββ (and whose habit it is to use red ink when writing

275 problem 72.
276 problem 73.
277 “Unaccelerated” is, we now see, redundant—implied already by the word
“electrostatic.” Readers may find it amusing/useful at this point to review the
ideas developed in §2 of Chapter 1.
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down his physical equations). It happens (let us assume) that O’s frame is
related irrotationally to ours; i.e., by a pure boost /\\\(βββ ). Then (see again §5
in Chapter 2) the coordinates which he/we assign to a spacetime point stand
in the relation

t = γt+ (γ/c2)vvv···xxx
xxx = xxx+

{
γt+ (γ − 1)(vvv···xxx)/v2

}
vvv

}
(210.1)

which can be notated (
t
x‖

)
= γ

(
1 v/c2

v 1

) (
t
x‖

)
xxx⊥ = xxx⊥


 (210.2)

while the electric/magnetic fields which he/we assign to any given spacetime
point stand in the relation

EEE = (EEE−βββ×BBB)‖ + γ(EEE−βββ×BBB)⊥
BBB = (BBB+βββ×EEE)‖ + γ(BBB+βββ×EEE)⊥

}
(263)

Let us suppose now that O sees a charge e to be sitting at his origin, and
no magnetic field: EEE = e

4πR
−2 x̂xx and BBB = 000. The latter condition brings major

simplifications to (263): we have

EEE = EEE‖ +EEE⊥ with
{
EEE‖ = EEE‖

EEE⊥ = γEEE⊥

BBB = BBB‖ +BBB⊥ with
{
BBB‖ = 000
BBB⊥ = γ(βββ×EEE)⊥ = βββ×EEE

which we see to be time-dependent (because we see the charge to be in motion).
We use the notations introduced in Figure 117 to work out the detailed meaning
of the preceding statements:

O sees a radial electric field:

E‖

E⊥
=
R‖

R⊥

But

R‖

R⊥
=
γR‖

R⊥
: the ‖-side of our space triangle is Lorentz contracted

E‖

E⊥
=

E‖

γ –1E⊥
: the ⊥-component of our EEE -field is Lorentz dilated

so
E‖

E⊥
=
R‖

R⊥
: we also see a radial electric field

But while O sees a spherical “pincushion,” we (as will soon emerge) see a
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E⊥

E‖

R⊥

α
e

R‖

E⊥

E‖

R⊥

α
e

R⊥ βββ

Figure 117: Figures drawn on the space-plane that contains the
charge •, the field-point in question, and the βββ -vector with which
the observer sees the other to be passing by. The upper figure defines
the notation used by O to describe the Coulomb field of the charge
sitting at his origin. The lower figure defines the notation we (in
the text) use to describe our perception of that field.
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flattened pincushion. More precisely: O sees the field intensity to be given by

E =
e

4πR2
, independently of α

It follows, on the other hand, from the figure that

E =
√

(E cosα)2 + ( 1
γE sinα)2 = E

√
cos2 α+ 1

γ2 sin2 α

so
E =

e

4πR2

1√
cos2 α+ 1

γ2 sin2 α

Similarly,

R =
√

(γR cosα)2 + (R sinα)2 = γR
√

cos2 α+ 1
γ2 sin2 α

so

E =
e

4πR2

1

γ2
(
cos2 α+ 1

γ2 sin2 α
) 3

2

=
e

4πR2

1 − β2(
1 − β2 sin2 α

) 3
2

(463.1)

which is to be inserted into

EEE = ER̂RR and BBB = βββ×EEE (463.2)

—the upshot of which is illustrated in Figures 118 & 119.

The results developed above make intuitive good sense, but do not much
resemble (462). The discrepency is illusory, and arises from the circumstance
that (462) is formulated in terms of the retarded position RRR0, while (463)
involves the present position RRR. Working from Figures 120 & 121 we have

RRR = RRR0 −R0βββ

which is readily seen278 to entail

R = R0

√
1 − 2R̂RR0···βββ + β2 = R0

√
1 − 2β cos θ + β2

Also278

sin2 α = (R0/R)2 sin2 θ =
1 − cos2 θ

1 − 2β cos θ + β2

and with this information—together with the observation that

βββ×EEE =
RRR0 −RRR
R0

× ER̂RR = R̂RR0×EEE

—it is an easy matter to recover (462) from (463).278

278 problem 74.
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βββ

Figure 118: Above: cross section of the “spherical pincushion”
that O uses to represent the Coulomb field of a charge • which he
sees to be at rest. We see the charge to be in uniform rectilinear
motion. The “flattened pincushion” in the lower figure (axially
symmetric about the βββ-vector) describes our perception of that same
electric field. Additionally, we see a solinoidal magnetic field given
by

BBB = βββ×EEE
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EEE

BBB

βββ

Figure 119:Ultrarelativistic version of the preceding figure,showing
also the solenoidal magnetic field. The “pincushion” has become a
“pancake:” the field of the rapidly-moving charge is seen to be very
nearly confined to a plane, outside of which it nearly vanishes, but
within which it has become very strong.

A curious cautionary remark is now in order. We have several times spoken
casually/informally of the Coulomb fields “seen” by O and by us. Of course,
one does not literally “see” a Coulomb field as one might see/photograph a
passing object (a literal pincushion). The photographic appearance of an object
(assume infinitely fast film and shutter) depends actually upon whether it is
continuously/intermittently illuminate/self-luminous: the remarks which follow
are (for simplicity) specific to continuously self-luminous objects. An object
traces a “worldtube” in spacetime. The worldtubes of objects in motion
(relative to us) are Lorentz-contracted in the βββ -direction. What we see/
photograph is the intersection of the Lorentz-contracted worldtube with the
lightcone that extends into the past from the eye/camera. The point—once
stated—is obvious, but its surprising consequences passed unnoticed until ,
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Figure 120: Variant of Figure 115 in which the motion of the
charge is not just “pretend unaccelerated” but really unaccelerated.
In this spacetime diagram the chosen field point is marked •, the
puncture point visible from • is marked •, while • marks the present
position of the charge.

RRR0 RRR

θ α
R0βββ

Figure 121: Representation of the spatial relationship among the
points •, • and •, which lie necessarily in a plane. A signal proceeds
• → • with speed c in time T0 = R0/c, during which time the charge
has advanced a distance vT0 = βR0 in the direction β̂ββ. This little
argument accounts for the lable that has been assigned to the red
base of the triangle (i.e., to the charge displacement vector).
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when they occurred independently to J. Terrell and R. Penrose. For discussion,
computer-generated figures and detailed references see (for example) G. D. Scott
& H. J. van Driel, “The geometrical appearance of large objects moving at
relativistic speeds,” AJP 33, 534 (1965); N. C. McGill, “The apparent shape
of rapidly moving objects in special relativity,” Contemp. Phys. 9, 33 (1968);
Ya. A. Smorodinskĭı & V. A. Ugarov, “Two paradoxes of the special theory of
relativity,” Sov. Phys. Uspekhi 15, 340 (1972). I am sure a search would turn
up also many more recent sources.

It is important to appreciate that our principal results—equations (462)
and (463)—might alternatively have been derived by a potential-theoretic line
of argument , as sketched below: O, who sees the charge e to be at rest, draws
upon (363) to write

EEE = −∇∇∇ϕ− 1
c

∂
∂tAAA

BBB = ∇∇∇×AAA
where

A =
(
ϕ
AAA

)
≡

(
e/4πR

000

)
entails

EEE = −∇∇∇ϕ = (e/4πR2)R̂RR and BBB = 000

O sees EEE to be normal to the equipotentials (surfaces of constant ϕ), which are
themselves spherical (see again the upper part of Figure 118). On the other
hand we—who see the charge to be in uniform motion—write

A = /\\\(−βββ )A = γφ

(
1
βββ

)
with

φ(x) = ϕ(xxx(xxx, t)) =
e

4π
√
γ2(xxx‖ − vvv t)···(xxx‖ − vvv t) + xxx⊥··· xxx⊥

and (drawing similarly upon (363)) obtain

EEE = −
{
∇∇∇ + βββ 1

c
∂
∂t

}
ϕ with ϕ ≡ γφ

BBB = −
{
βββ ×∇∇∇

}
ϕ

from which (462/463) can (with labor) be recovered. Note that we consider
the equipotentials to be ellipsoidal (see again the lower part of Figure 118),
and that the βββ 1

c
∂
∂tϕ -term causes the EEE -field to be no longer normal to the

equipotentials.

Useful geometrical insight into analytical results such as those developed
above (and in the next chapter) can be obtained if one looks to the structure
of the so-called “equiphase surfaces” which (see Figure 122) are inscribed on
timeslices by lightcones projected forward from source points. The points which
collectively comprise an equiphase surface “share a puncture point,” but in the
general case (i.e., except when the source is seen to be momentarily at rest)
share little else. To the experienced eye they do, however, indicate at least the
qualitative essentials of field structure . . . as will emerge.
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βββ

timeslice

worldline of a charge

Figure 122: Above: “equiphase surfaces” inscribed on a timeslice
by (in this instance) a solitary charge in uniform motion (lower
spacetime diagram). More complicated variants of the figure will be
encountered in the next chapter.


